2016 Looking at People CVPR Challenge - Track 3: Smile and Gender Classification
Evaluation metrics
Evaluation Criteria
For the validation and testing process, the output from your system should be a vector with the following structure:
Where:
- 1st column: name of the image
- 2nd column: x coordinate of the bounding box around the detected face
- 3rd column: y coordinate of the bounding box around the detected face
- 4th column: width if the bounding box around the detected face
- 5th column: height if the bounding box around the detected face
- 6th column: gender of the face (0 is male and 1 is female)
- 7th column: whether or not the face is smiling(0 is not smiling and 1 is smiling)
This problem can be approached as a classification or regression problem. Either way, the results will be evaluated by calculating the mean square error between the prediction and the ground-truth. This measure error will range between 0 (gender and smile have been correctly classified) and 1 (classified gender and smile are not correct). Not predicted faces are evaluated with 1.
Submission format
In this track, the participants should submit a ZIP file containing their models with a file called README.txt with instructions on how to run the code. We will run your code with our testing data and then, using the mean square error formula, we will calculate the mean error over the whole test set.
Each solution will be ranked in ascending order according to this error. The winner will be whoever gets the smaller error.