
Fact sheet: ECCV 2020 ChaLearn Looking at People
1st Fair Face Recognition Challenge

This is the fact sheet’s template for the ECCV 2020
ChaLearn Fair Face Recognition Challenge [1]. Please fill
out the following sections carefully in a scientific writing
style. Then, send the compressed project (in .zip format),
i.e., the generated PDF, .tex, .bib and any additional
files to juliojj@gmail.com, and put in the Subject
of the email “ECCVW 2020 FairFaceRec Challenge / Fact
Sheets”, following the schedule and instructions provided in
the Challenge webpage [1] (post-challenge/fact sheets).

I. TEAM DETAILS

• Team leader name: Shengyao Zhou
• Username on Codalab: paranoidai
• Team leader affiliation: RuiYan Technology
• Team leader email: 197479645@qq.com
• Name of other team members (and affiliation): Junfan

Luo - RuiYan Technology, Junkun Zhou - RuiYan
Technology and Xiang Ji - RuiYan Technology

• Team website URL (if any): http://www.
ruiyanai.com/

II. CONTRIBUTION DETAILS

A. Title of the contribution

Fairface recognition is a challenging task due to high
variances between diffrent attributes and unbalancement of
data. In this work, we provide an approach to make a fairface
recognition by using asymmetric-arc-loss training and multi-
step finetuning. First,we train a general model, and then, we
make a mutli-step finetuning to get higher auc and lower
bias. Besides, we propose another viewpoint on reducing the
bias and bag of tricks such as reranking, boundary cut and
hard-sample model fusion to improve the performance.

B. Introduction and Motivation

Face recogniton has been widely used and researched and
a lot of class-level losses such as Softmax, SphereFace[2],
CosineFace [3] and ArcFace [4] are used to improve the per-
fomance. All of these losses are trying to minimize between-
class similarity sn and maximize within-class similarity
sp. However, we don’t always need to minimize between-
class similarity extremely since there are also similar faces
between class, in this situation, try to minimize the between-
class similarity extremely may lead to noise in gradient
and potentially lead to worse convergence. Besides, the
previous face-recognition approach focus more on the auc
on the whole test-set and less on bias between attributes.
Based on these ideas, wo proposed a fairface recognition

approach aiming at higher accuracy and lower bias. Our
major contribution can be summarized into four aspects:

• First, an asymmetric-arc-loss. From the previous class-
level loss analysis, we propose an asymmetric-arc-loss which
is a combination of arc-face loss and circle-loss. Besides, we
modify the loss contribution from negtive pairs similarities
and make it asymmetric to positive similarities, which means
we don’t minimize the negtive similirity extremely, which
finally decrease the gradient contibution from easy negtive
samples.

• Second, a multi-step finetuning. We propose a multi-
step finetuing method to minimize the bias between different
protected attributes and this is controllable and stable in
improving the model’s performance on most discriminated
protected-attribute data.

• Third, bag of tricks. We use bag of tricks such as
reranking, boundary cut and hard-sample model fusion to
get higher accuracy and lower bias. And the hard-sample
model fusion are quite significant for bias mitigation.

• Finally, another viewpoint on bias mitigation. We
give another viewpoint on bias mitigation. And it’s easy to
impement and can decrease the bias even as whatever you
want.



C. Representative image / workflow diagram of the method

Fig. 1. Loss value with θn and θp for arc-face-loss, circle-loss and
asymmetric-arc-loss.

Fig. 2. Pipeline for the whole process.

TABLE I
BACKBONE AND RESULTS USING ASYMMETRIC-ARC-LOSS ON

VALIDATION.

Backbone PosiBias NegBias Auc
Mobilefacenet 0.012916 0.017778 0.982363
Resnet50 0.009215 0.010823 0.988492
Resnet101 0.005070 0.006807 0.992260
ResNeSt101 0.005939 0.007511 0.990803

TABLE II
LOSS AND RESULTS USING RESNET101 ON VALIDATION

Loss PosiBias NegBias Auc
Arcface 0.021367 0.017595 0.976372
Circle-loss 0.008559 0.009488 0.991284
Asymmetric-arc-loss 0.005070 0.006807 0.992260



TABLE III
FINETUNING STEP AND POSTPROCESS ON VALIDATION

Step PosiBias NegBias Auc
Asymmetric-arc-loss Training 0.005070 0.006807 0.992260
Asymmetric-arc-loss Finetuing 0.004988 0.005699 0.994518
Select Attribute Finetuing 0.005414 0.001250 0.995319
Select Attribute Finetuing with
Reranking and BoundaryCut

0.002707 0.000697 0.996075

TABLE IV
FINETUNING STEP AND POSTPROCESS ON TEST

Step PosiBias NegBias Auc
Asymmetric-arc-loss Finetuing
with Reranking and BoundaryCut

0.000299 0.000115 0.999899

Select Attribute Finetuing with
Reranking and BoundaryCut

0.000273 0.000079 0.999910

Select Attribute Finetuing with
Reranking and BoundaryCut and
Hard-Sample Fusion

0.000012 0.000059 0.999966

D. Detailed method description

Just as the Fig. 2 shows, our solution can be summarized
to these 5 steps:

1) Step1.Train a general model: In this step, we proposed
asymmetric-arc-loss for training. Let’s start with the arcface
loss [4]:

Larc = − 1
m

m∑
i=1

log es(cos(θyi+m))

es(cos(θyi+m))+
∑n
j=1,j 6=yi

es cos θj

subject to

Wj =
Wj
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‖xi‖ , cos θj = W T

j xi

We assume θyi as θp and others as θn.It’s easy to analyze
that the loss is Monotonically increasing to the θp while
θp + m < π and Monotonically decreasing to θn, so, as
shown in Fig.1, it’s convergence target is to maximize θn
and to minimize θp.

Then we take a look at Circle loss[5], which is:

Lcir = log[1 +
L∑
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exp(γαjn(sjn −

∆n))
K∑
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exp(−γαip(sip − ∆p))]

where sn means negtive similarity and sp means positive.
And in the class-level style, there is only one sp so the loss
can be shown as:
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Circle-loss provide the self-weighted for sn and sp. We
can also analyze that the loss is Monotonically increasing
to the sn and Monotonically decreasing to sp, while both
sp and sn are in (0,1). From the angel view, as shown in
Fig.1, it’s convergence target is to maximize θn to π/2 and
to minimize θp to 0.

Based on the previous analysis, we can get two insights
on improving the loss fuction.

• Combination of advantages. Since arc-loss provide an
additive angular margin and circle-loss provide self-weighted
in training, we can make a combination for these two loss
to use both of their advantages.

• Convergence target shift. From the previous anylasis,
the convergence target of circle-loss is to maximize θn to
π/2 and the convergence target of arc-loss is even maximize
θn to π. But in fact, we don’t alwayas need to maximize θn
to π/2 or π. Since in face rocognition situation, we can’t
make sure that people in different sub ids are not similar at
all, it’s usual that two different people have some simliarity,
like 0.3 or 0.2, and try to minimise this simliarity may make
model pay useless attention on easy negtive samples.To
solve this problem, we give a shift on the convergence
target for negtive and make easy negtive samples contribute
less to the final grad.

So we proposed an asymmetric-arc-loss. The asymmetric-
arc-loss can be shown like this:
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Where γ and tm are hyperparameters and θyip + ∆p,
θjn + ∆n are clip to (0, π).

Let’s make a analysis on this loss. First, just like circle-
loss, θn and θp get self-weighted based on their own value
via α. Since On and Op are fixed, the higher value of



θp, which is more difficult get higher weights and lower
value of θn, also diffcult, get more weights.And turn to
the easy samples, for positive, the weights are still kept,
and for negtive samples, if θjn > On, their weights will
become 0. Then we can see that this loss give a margin
on θ instead of similarity, just like the arc-loss, to get an
additive cosine margin. The decision boundary is achieved at

γ(αp cos(θp + ∆p) − αn cos(θn + ∆n)) = 0

What’s more, seen from the grad, we take a
look at item about θn, we assume that vn =
αn cos(θn + ∆n) = (tm − θn) cos(θn + π − tm) and
∂vn
∂θn

= cos(θn − tm) − (θn − tm) sin(θn − tm) so the loss
get min value for cos(θn−tm)−(θn−tm) sin(θn−tm) = 0,
in our hyperparameter setting where tm = 0.65π , the θn is
at about 0.38π, and this target can shift base on the value
of tm.so this loss can focus less on easy negtive samples
since their grad are smaller.

Fig 1 shows the different convergence target between these
loss, and we can find that our loss’s negtive convergence
target shift to left, compared to arc-loss and circle-loss. We
made a ablation experiment for arc-loss, circle-loss and our
asymmetric-arc-loss on validation set and the results are at
TABLE II.

In the actual instruction, we make a data preprosses on
the training set. We use a open-source retina-face model [6]
[7] [8] to make a face-detection and get landmarks, then
we align the face using standard 5-point landmarks and get
a 112*112 size aligned face.And then we train a general
model, the details are as followed:
• Dataset. We use MS1M-ArcFace (85K ids/5.8M images)

[14] and our self-owned face(10K ids/0.5M images) dataset
for this stage.
• Backbone. We’ve tried on Mobilefacenet[9], ResNet50,

ResNet101 [10] and ResNeSt [11], and finally choose
ResNet101 as the backbone. TABLE I shows the perfomance
of these backbone.

• Loss. Just as mentioned at section 2, we proposed
asymmetric-arc-loss for training, and the hyperparameter
setting is 0.65π for tm and 64 for γ.

• Training settings. We train the general model using
4 Tesla-v100 gpus at batch-size 1600, the starting learning
rate is 0.1 and then decreasing to 0.01 after 100000steps then
decreasing to 0.001 at 160000 steps and finally decreasing to
0.0001 at 200000steps. We use fp16 data-fomat in training
to speed-up the training and maximize the batch-size.

2) Step2.Finetune model: In this step, we use the model
from step1 as pretrained so the backbone is same.We use
provided fairface training dataset for this stage. And we use
asymmetric-arc-loss and we set same hyperparameters. At
the begining of the finetuing, we freeze all layers but the last
fc-layer for three epochs because the grad generated at the
begining are noisy to other layers. And after three epochs, we

train all layers. The learning rate is set to 0.002 for finetuing
and decreas to 0.0002 after 3000 steps since we start to train
all layers.

3) Step3.Most-discriminated protected-attributes data
finetune: This step is quite important for the bias mitigation
and easy to understand. Training a model on one attribute
data can directly improve its performance on this attribute
data and therefore dismiss bias. But this step needs careful
tuning because the model will overfit on this attributes and
lead to decreasing in acc and incresing in bias.

In this step, first we make a prediction on fairface training
set using model from step2, and then choose the most-
discriminated protected-attributes according to the prediction
accuracy. After we get the most-discriminated protected-
attributes, we finetune the model from step2 using the data
with most-discriminated protected-attributes. We train all
layers directly and the loss and batch-size are same with
step2, but we set the learning rate wo 0.0002 at the begining
and only trian for 1 epoch. The performance improvement
of these finetuing steps are shown in TABLE III and TABLE
IV

4) Step4.Hard-sample pick and finetune another: After
we get a final finetuned model at step3, there must be
some data on the fairface training set that the model can’t
truely predict. These are obvious hard samples. According
to the existing conclusions, pay much attention to most-hard
smaples will lead to bad performance , for example, in triplet
loss traning, we select semi-hard sampels. But the hard-
samples problem also needs to be solved, so we proposed
a model fusion strategy. We get the false-predicted ids from
the model, which means the predicted argmax id is not equal
to the annotation id, and then finetune a model from step1
general model with just picked ids. We then get a model
which performs better for those hard-sample but worse in
general cases, so at the fusion step, we only take the result
with extremely high confidence from the hard-sample model.

In this step, we make a prediction on training set using
model from step3, and get false samples, whose prediction
argmax is different from the annotation. And then we choose
ids that contain these samples as a new training dataset. After
we get the dataset, we finetune the model from step1 using
the same settings with step2 on the choosen dataset.Finally,
we get a model performance better on hard-sample and
prepare this model for next model fusion.

5) Step5.Postprocess: We do three post process steps
from the original result.

• Reranking. It’s widely used in person-reid task [13] and
we just use a very simple edition at this work. For template id
A and B, we can get their original similarity score produced
by the model, and by traversal the predictions file, we can get
a set consists of k template ids which have highest similarity
score to A and B, then we compare the two sets, if some
template id C are both in A’s top k set and B’s top k set, we
add a similarity score to another similarity score betweend
A and B called top-k similarity. And the final similarity of
A and B is a weighted sum of original similarity and top-k



similarity.
First we build a top20-similar set for every template and

then for a given pair A and B , we compute the overlap of A’s
and B’s top20 dict and get the top-20 overlap similiraty.The
persudo code can be shown as :

1 topkSim = 0
2 f o r i t em in t o p D i c t [A ] :
3 i f ( i t em in t o p D i c t [B ] ) :
4 topkSim += t o p D i c t [A] [ i t em ] ∗

t o p D i c t [B ] [ i t em ]
5 f i n a l S i m i l a r i t y = 0 . 6 5 ∗

o r i g i n a l S i m i l a r i t y + topkSim / 20 ∗
0 . 3 5

• BoundaryCut. For some template ids in the predictions,
there is a obvious boundary between the positive samples
and negtive samples, so, we increase the similarity score
up the boundary and decrease the similarity score under
the boundary. For a template id A, we first traversal the
predictions file, and find all pairs that contain A as a
itemlist, and found its boundary. We sort the itemlist and
get itemlist[1] - itemlist[i+1] as grad, and find the lowest
boundary. And then increase the similarity score if it is
greater than the boundary and decrease it if it s less then
the boundary, the persudo code can be show as :

First we find the Boundary

1 f o r i t em in SimDict :
2 i t e m l i s t = SimDict [ i t em ]
3 i t e m l i s t . s o r t ( )
4 i t e m l i s t . r e v e r s e ( )
5 SimDict [ i t em ] = ( 0 . 0 , 0 . 0 )
6 f o r i in range ( l e n ( i t e m l i s t ) − 1) :
7 g rad = i t e m l i s t [ i ] − i t e m l i s t [ i +

1 ]
8 i f ( g r ad > 0 . 1 ) :
9 SimDict [ i t em ] = ( i t e m l i s t [ i +1 ] ,

g r ad )

And then make cut on prediction

1 t h r e s 1 , g rad1 = SimDict [ i d 1 ]
2 t h r e s 2 , g rad2 = SimDict [ i d 2 ]
3 f i n a l D i s = f e a t u r e D i s
4 i f ( f e a t u r e D i s > t h r e s 1 + 1e−3) :
5 f i n a l D i s += grad1 ∗ 0 . 1
6 e l s e :
7 f i n a l D i s −= grad1 ∗ 0 . 1
8 i f ( f e a t u r e D i s > t h r e s 2 + 1e−3) :
9 f i n a l D i s += grad2 ∗ 0 . 1

10 e l s e :
11 f i n a l D i s −= grad2 ∗ 0 . 1

• Hard-Sample Fusion. For a pair A and B, we get
two similarity scores from step3 finetuned model and hard-
sample model, and we only take the hard-sample model when
it has extremely high confidence, the persudo code can be

shown as : Just as metioned before, we train another model
from hard-sample only and take its result on when it has
extremely high confidence

1i f ( ha rdSampleScore > 0 . 9 9 ) :
2f i n a l S c o r e = ha rdSampleScore
3e l s e :
4f i n a l S c o r e = g e n e r a l S c o r e

The performance improvement of these post-process steps
are shown in TABLE III and TABLE IV

E. Challenge results and final remarks

Fill Table V with your obtained results, shown in the
leaderboard of the challenge1. Note, if you joined the chal-
lenge in the test phase, keep the “development” row blank.

TABLE V
LEADERBOARD: RESULTS OBTAINED BY THE PROPOSED APPROACH.

Phase Rank Bias positive pairs Bias negative pairs Accuracy
Development
Test 1 0.000012 0.000059 0.999966

III. ADDITIONAL METHOD DETAILS

Please reply if your challenge entry considered (or not)
the following strategies and provide a brief explanation.

• Did you use pre-trained models? ( ) Yes, (X) No
If yes, please detail:

• Did you use external data? (X) Yes, ( ) No
If yes, please detail:
We use MS1M-ArcFace (85K ids/5.8M images) [14]
and our self-owned face(10K ids/0.5M images) dataset
for step1 general training.

• Did you use other regularization strategies/terms?
( ) Yes, (X) No
If yes, please detail:

• Did you use handcrafted features? ( ) Yes, (X) No
If yes, please detail:

• Did you use any face detection, alignment or seg-
mentation strategy? (X) Yes, ( ) No
If yes, please detail:
We use a open source retina-face detect and landmark
model and use the landmarks to align the face

• Did you use ensemble models? (X) Yes, ( ) No
If yes, please detail:
We train a general model and a hard-sample focus
model and make a result fusion, since the generalization
of general model is much better than hard-sample focus
model, we only take the hard-sample focus model’s
result when it’s confidence is greater than the threshold,
in this work, we choose 0.99 as threshold, and there are

1https://competitions.codalab.org/competitions/
24123



nearly no false-positive at this confidence, this fusion
strategy increase our auc and decrease positive bias

• Did you use different models for different protected
groups? ( ) Yes, (X) No
If yes, please detail:

• Did you explicitly classify the legitimate attributes?
( ) Yes, (X) No
If yes, please detail:

• Did you explicitly classify other attributes (e.g.
image quality)? ( ) Yes, (X) No
If yes, please detail:

• Did you use any pre-processing bias mitigation
technique (e.g. rebalancing training data)?
( ) Yes, (X) No
If yes, please detail:

• Did you use any in-processing bias mitigation tech-
nique (e.g. bias aware loss function)?
(X) Yes, ( ) No
If yes, please detail:
Our asymmetric-arc-loss is self-weighted so it can give
more weight to samples which achieve worse perfor-
mance, and bias is decreased based on greater weight
on these samples.

• Did you use any post-processing bias mitigation
technique? (X) Yes, ( ) No
If yes, please detail:
We use a protected-attribute based random noise at
development phase and it can decrease the bias as
whatever you want. In test phase, this method is not
used since bias is low enough. But from research view,
this is what we thought as another viewpoint to bias and
acc. For example, if we know that this model performs
better on attribute A, but worse on B, just for fair
purpose, making this model perform better on B is equal
to making this model perform worse on A, but making
this model perform worse on A is quite easy. Random
noise can be thought as a method, it can be done by
follow steps: first we train a classification model for
two attributes, and a face-recognition model, then we
evaluate the face-recognition model on the real-used
domain test dataset, and we can get the bias between
two attributes. Assume we perfom better on A, and in
actual using we can make a attribute classifition and
choose relatively sure result, for example, confidence-
score is greater than 0.95 and set a probability to modify
the oringal face-recognition result opposite and dynamic
adjust the probability based on the performance in
actul using.We can get a absolutely fair system by this
way.So, if we get a model with high accuracy, it’s easy
to make it fair to different groups. the persudo code for
this instruction is :

1 i f ( a t t i b u t e == A) :

2 randomScore = random . random ( )
3 i f ( randomScore < p r o b a b i l i t y and

p a i r S c o r e > p o s i T h r e s ) :
4 p a i r S c o r e = 1 − p a i r S c o r e
5 e l i f ( andomScore < p r o b a b i l i t y and

p a i r S c o r e < negThres ) :
6 p a i r S c o r e = 1 − p a i r S c o r e
7 # assume p a i r S c o r e i s n o r m l i z e d t o

0−1

IV. CODE REPOSITORY

Link to a code repository with complete and detailed
instructions so that the results obtained on Codalab can be
reproduced locally. This includes a list of requirements,
pre-trained models, and so on. Note, training code with
instructions is also required. This is recommended for all
participants and mandatory for winners to claim their prize.
Organizers strongly encourage the use of docker to
facilitate reproducibility.

Code repository: https://github.com/
paranoidai/Fairface-Recognition-Solution
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