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• General method description:This paper addresses the problem of continuous ges-
ture recognition with convolutional neutral networks (ConvNets) using depth
maps sequences. Unlike the common isolated recognition scenario, the gesture
boundaries are here unknown, and one has to solve two problems: segmenta-
tion and recognition. For segmentation, we first obtained the begin and end
frames of each gesture based on quantity of movement (QOM) and then pro-
posed one compact representations for depth sequences, called Improved Depth
Motion Map (IDMM), which converts each depth sequence into one image, to
recognize the gestures using ConvNets. This method enables the use of existing
ConvNets models directly on video data with fine-tuning, without introducing
much parameters to be learned.

• References:
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• Representative image / diagram of the method:
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Figure 1: The framework for proposed method.

• Describe data preprocessing techniques applied (if any): None
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3 Visual Analysis

3.1 Gesture Recognition (or/and Spotting) Stage
3.1.1 Features / Data representation

Describe features used or data representation model FOR GESTURE RECOGNITION
(OR/AND SPOTTING) STAGE (if any): Deep learned features using ConvNets.

3.1.2 Dimensionality reduction

Dimensionality reduction technique applied FOR GESTURE RECOGNITION (OR/AND
SPOTTING) STAGE (if any):None

3.1.3 Compositional model

Compositional model used, i.e. pictorial structure FOR GESTURE RECOGNITION
(OR/AND SPOTTING) STAGE (if any):None

3.1.4 Learning strategy

Learning strategy applied FOR GESTURE RECOGNITION (OR/AND SPOTTING)
STAGE (if any): Using ConvNets to learn.

3.1.5 Other techniques

Other technique/strategy used not included in previous items FOR GESTURE RECOG-
NITION (OR/AND SPOTTING) STAGE (if any): We used Improve Depth Motion
Maps (IDMM) for the input of ConvNets to learn the features.

3.1.6 Method complexity

Method complexity FOR GESTURE RECOGNITION (OR/AND SPOTTING) STAGE:
Real-time

3.2 Data Fusion Strategies
List data fusion strategies (how different feature descriptions are combined) for learn-
ing the model / network: Single frame, early, slow, late. (if any): None

3.3 Global Method Description
• Which pre-trained or external methods have been used (for any stage, if any):

We use pre-trained models on ILSVRC-2012 for Alexnet.

• Which additional data has been used in addition to the provided ChaLearn train-
ing and validation data (at any stage, if any): We only used depth data.
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• Qualitative advantages of the proposed solution: simple yet effective

• Results of the comparison to other approaches (if any):

Table 1: Comparative accuracy of proposed method and baseline methods on the
ChaLearn LAP ConGD Dataset.

Method Set Mean Jaccard Index JS
MFSK Validation 0.0918

MFSK+DeepID Validation 0.0902
Proposed Method Validation 0.2403

MFSK Testing 0.1464
MFSK+DeepID Testing 0.1435

Proposed Method Testing 0.2655

• Novelty degree of the solution and if is has been previously published: incre-
mental

4 Other details
• Language and implementation details (including platform, memory, paralleliza-

tion requirements): Matlab + Caffe + Python. GPU memory required no less
than 3 GB.

• Human effort required for implementation, training and validation? Easy.

• Training/testing expended time? Less than one hour.

• General comments and impressions of the challenge? what do you expect from
a new challenge in face and looking at people analysis?: Very good and hope to
see more contestants.

6


