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2 Contribution details
• Title of the contribution:Large-scale Isolated Gesture Recognition Using Convo-

lutional Neutral Networks

• Final score : 55.57%

• General method description: In this paper we proposed three simple, compact
yet effective representations of depth sequences for gesture recognition in the
context of convolutional neutral networks (ConvNets). The three representations
are called Dynamic Depth Image (DDI), Dynamic Depth Normal Image (DDNI)
and Dynamic Depth Motion Normal Image (DDMNI). They are all based on
bidirectional rank pooling method converting the depth sequences into images.
Such representations enables the use of existing ConvNets models directly on
video data with fine-tuning without introducing large parameters to learn. The
three representations represent the posture and motion in different levels and they
are complementary to each other and improve the recognition accuracy largely.
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• Representative image / diagram of the method:
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Figure 1: The framework for proposed method.

• Describe data preprocessing techniques applied (if any):None
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3 Visual Analysis

3.1 Gesture Recognition (or/and Spotting) Stage
3.1.1 Features / Data representation

Describe features used or data representation model FOR GESTURE RECOGNITION
(OR/AND SPOTTING) STAGE (if any): ConvNets learned features

3.1.2 Dimensionality reduction

Dimensionality reduction technique applied FOR GESTURE RECOGNITION (OR/AND
SPOTTING) STAGE (if any):None

3.1.3 Compositional model

Compositional model used, i.e. pictorial structure FOR GESTURE RECOGNITION
(OR/AND SPOTTING) STAGE (if any): None

3.1.4 Learning strategy

Learning strategy applied FOR GESTURE RECOGNITION (OR/AND SPOTTING)
STAGE (if any): ConvNets

3.1.5 Other techniques

Other technique/strategy used not included in previous items FOR GESTURE RECOG-
NITION (OR/AND SPOTTING) STAGE (if any):None

3.1.6 Method complexity

Method complexity FOR GESTURE RECOGNITION (OR/AND SPOTTING) STAGE:
Somewhat complicated

3.2 Data Fusion Strategies
List data fusion strategies (how different feature descriptions are combined) for learn-
ing the model / network: Single frame, early, slow, late. (if any): Score fusion

3.3 Global Method Description
• Which pre-trained or external methods have been used (for any stage, if any):

VGG-16 Models

• Which additional data has been used in addition to the provided ChaLearn train-
ing and validation data (at any stage, if any): We only use depth data.

• Qualitative advantages of the proposed solution: Good results
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Table 1: Comparative accuracy of proposed method and baseline methods on the
ChaLearn LAP IsoGD Dataset.

Method Set Recognition rate r
MFSK Validation 18.65%

MFSK+DeepID Validation 18.23%
Proposed Method Validation 39.23%(AlexNet)

MFSK Testing 24.19%
MFSK+DeepID Testing 23.67%

Proposed Method Testing 55.57% (VGG-16)

• Results of the comparison to other approaches (if any):

• Novelty degree of the solution and if is has been previously published: Novel

4 Other details
• Language and implementation details (including platform, memory, paralleliza-

tion requirements): Matlab + Caffe + Python. No less than 8G GPU memory
under Ubuntu14.04.

• Human effort required for implementation, training and validation?: Easy

• Training/testing expended time?: Less than 10 hours.

• General comments and impressions of the challenge? what do you expect from
a new challenge in face and looking at people analysis? Very good and challeng-
ing.
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