
Fact sheet: CVPR 2021 ChaLearn Looking at People Large Scale Signer
Independent Isolated SLR Challenge

This is the fact sheet’s template for the CVPR 2021
ChaLearn Looking at People Large Scale Signer Independent
Isolated SLR Challenge [1]. Please fill out the following
sections carefully in a scientific writing style. Then, send
the compressed project (in .zip format), i.e., the generated
PDF, .tex, .bib and any additional files to juliojj@
gmail.com, and put in the Subject of the email “CVPR
2021 SLR Challenge / Fact Sheets”, following the schedule
and instructions provided in the Challenge webpage [1]
“Wining solutions (post-challenge), Fact Sheets”. Note, if
you participated in both track, you will need to send one
fact sheet per track.

I. TEAM DETAILS

• Challenge Track (RGB or RGB+D): RGB+D
• Team leader name: Mathieu De Coster
• Username on Codalab: m-decoster
• Team leader affiliation: IDLab-AIRO - Ghent University

- imec
• Team leader address: Technologiepark Zwijnaarde 126,

9052 Zwijnaarde, Belgium
• Team leader phone number: 003292643366
• Team leader email: mathieu.decoster@ugent.be
• Name of other team members (and affiliation): NA
• Team website URL (if any): NA

II. CONTRIBUTION DETAILS

A. Video Transformer Networks with hand cropping and
pose flow

Our goal in this competition is to apply the Video Trans-
former Network on a publicly available dataset for isolated
sign language recognition. We specifically choose the Video
Transformer Network because transformers are used in sign
language translation with state of the art performance. The
Video Transformer Network has already been evaluated on an
isolated sign language recognition task before; we now verify
its performance on a different, public, dataset. We implement
the model and improve its performance by cropping out
the hands and encoding movement information in a low-
dimensional representation which we call pose flow. As part
of our entrance to this competition, we have applied our
model for the RGB track with an added depth branch to
the problem for the RGB+D track. As our only modification
to our model and approach is this added depth branch, the
majority of this fact sheet is identical to our fact sheet for
the RGB track. We achieve a recognition rate of 0.916700 on
the validation set and of 0.933200 on the test set of AUTSL.

B. Introduction and Motivation

Our method is based on the Video Transformer Network
(VTN). This network architecture was originally introduced
by Kozlov et al. for action recognition [2]. It consists
of a 2D Convolutional Neural Network (CNN) as feature
extractor and a multi-head self-attention sequence classifier.
De Coster et al. applied this method to isolated sign lan-
guage recognition on the corpus of Flemish sign language
[3] and obtained state of the art results on that dataset
[4]. Our goal in this competition is to apply and improve
the VTN for sign language recognition using the AUTSL
dataset [5]. We propose several improvements, mostly related
to pre-processing and data augmentation, that increase the
classification accuracy of the model. These improvements
include additional augmentation (random horizontal flipping
and changes in brightness, contrast, and saturation), as well
as the cropping of the hands and the introduction of pose
flow features. The details are explained in section II-D.

One powerful architecture for sign language recognition
is based on 3D CNNs. Specifically, the I3D network [6]
has been used to obtain state of the art accuracy on several
isolated sign language recognition datasets [7], [8]. This
method has the advantage of combining spatial and temporal
feature extraction, while the VTN model performs these
in separate stages. However, the VTN model allows for
the processing of additional features in the temporal stage,
without requiring that these features be of the same modality
as the RGB features. In fact, this property of the VTN allows
us to include pose flow information in the same temporal
processing layers as the features extracted from the RGB
input frames. In I3D, a separate temporal CNN or other
architectural modifications would be required.

The fact that the VTN architecture separates spatial and
temporal processing, additionally allows individual tweaking
of the spatial processing network (CNN) and temporal pro-
cessing network (self-attention decoder). For example, if the
VTN is applied on a small dataset, one might wish to use
ResNet-18 instead of ResNet-34 to reduce the number of
trainable parameters. One can also replace the ResNet with
a different architecture, for example VGG-16 [9], or tweak
the number of heads and layers in the self-attention decoder
(or use a different decoder architecture altogether). In I3D,
the spatial and temporal processing are intertwined and it is
more difficult to alter the model significantly while still using
pre-trained weight initialization. Therefore, we chose to work
with the VTN as we deemed it allowed more flexibility in
our experiments during the competition.



Finally, transformers obtain state of the art results in sign
language translation [10], [11]. The VTN is therefore an
interesting candidate to evaluate for isolated sign language
recognition.

C. Representative image / workflow diagram of the method

Fig. 1. The pipeline of our approach (not depicted: data augmentation).

D. Detailed method description

For all our experiments, we use PyTorch 1.7.1 [12] and
Torchvision 0.8.2 [13]. Furthermore, our implementation is
based on PyTorch Lightning 1.1.1 [14].

Figure 1 shows the architecture of our model. First Open-
Pose is used to extract 2D keypoints from the RGB and
depth video frames, specifically using the BODY-135 model
[15]. Then, the keypoints of the wrists, elbows and shoulders
are used to extract hand crops. The keypoints are also used
to extract pose flow information. The hand crop images are
processed in a mini-batch by a pre-trained ResNet-34 and the
resulting feature vectors are concatenated with the pose flow
features. These features are processed using a self-attention
decoder and its outputs are classified by a linear classifier to
obtain the final output.

1) Dataset preparation: We make a custom validation
set for the development stage. We do this by taking a
stratified grouped split with 80% of the original training set
used as training data and the remaining 20% as validation
data. We use person identifiers as groups to make our split
signer independent. The resulting label file, provided in the
code repository, can be used to reproduce our results on
the development set. However, we recommend using the
validation set provided by the competition organizers, as this
allows for a larger training set.

2) Keypoint extraction: We use OpenPose [16] with the
BODY-135 model [15]1 to extract 2D keypoints for all
samples. We do this in an offline fashion by using the
OpenPose demo binary to extract the keypoints per video
file. We store the resulting keypoints as JSON files along
with the original MP4 files. Each sample has a corresponding
directory of JSON files: one JSON file per frame. While it
is possible to attempt a transformation of 2D poses to 3D
using the provided depth information, we did not apply this
during this competition.

1The keypoints and their corresponding indices in the pose arrays
are given in the source code of OpenPose: https://github.
com/CMU-Perceptual-Computing-Lab/openpose/blob/
41d8c087459fae844e477dda50a6f732e70f2cb8/src/
openpose/pose/poseParameters.cpp#L149.

3) Hand cropping: Our hand cropping procedure is based
on the work of Simon et al. [17]. We extract image crops
around the hands using the OpenPose keypoints. We place
the crop along the extension of the elbow and wrist. Unlike
Simon et al., we compute the (square) crop size based on
the distance between the shoulders, such that the size is
always linked to the specific camera settings and physical
proportions of the person.

The center of the bounding box c is derived from the wrist
w and elbow e:

c = w + 0.15(w − e). (1)

The size s of the bounding box is derived from the distance
between the left and right shoulder (l and r):

s = 1.2 ‖l − r‖2 . (2)

The factor 0.15 is proposed by Simon et al.. The factor 1.2
is empirically obtained by us.

4) Pose flow: We select K = 53 keypoints for the
computation of pose flow. We only compute the pose flow
for keypoints of the hands and the upper body. The face
keypoints are not included, as we empirically found no
benefit to doing so. We remove following keypoints: k ∈
[11, 16], k ∈ [19, 24] and k ∈ [65, 134].

For each of these keypoints, we compute the angle and
magnitude of the motion vector between two subsequent
frames. Before computing the pose flow, we pre-process the
keypoints of each sample to reduce the impact of keypoint
estimation errors and to be signer independent. When Open-
Pose is unable to estimate a keypoint, it maps it to the origin
by predicting (x, y) = (0, 0). We first replace any such
keypoint by an estimated keypoint in neighbouring frames.
We look for such a replacement keypoint in both previous
and subsequent frames. While doing so, we minimize the
distance between the original frame and the replacement
frame. Afterwards, we normalize each pose, by dividing all
keypoints by the length of the neck to account for differences
in camera setups and physical properties of the person in the
sample.

After these pre-processing steps, we can compute the pose
flow as follows. Let P be the keypoints of the entire sample,
P (i) the keypoints of frame i and P

(i)
k the keypoint k in

frame i. Then the motion vector µ(i)
k for keypoint k in frame

i, for i > 0, is defined as

µ
(i)
k = P

(i)
k − P

(i−1)
k . (3)

The angle θ(i)k is then

θ
(i)
k =

arctan2 (y, x)

π
(4)

for (x, y) = µ
(i)
k . The normalization factor 1

π is used to
obtain a value in the range (−1, 1]. The magnitude ρ(i)k is
defined as the 2-norm of the motion vector:

ρ
(i)
k =

∥∥∥µ(i)
k

∥∥∥
2
. (5)



We obtain a vector
(
θ
(i)
k , ρ

(i)
k

)
for each of the remaining 53

keypoints per frame. For the first frame, i = 0, we initialize
the pose flow to zero.

5) Data augmentation: We perform spatial data augmen-
tation on a per clip basis. This means that we fix the
parameters of our augmentation pipeline per clip such that
all frames in the sample are augmented in the same way.

We first scale the hand crop images to 256 by 256 pixels.
Then, we perform a multi-scale and corner crop [18] to 224
by 224 pixels. In a multi-scale corner crop, a crop size is
randomly selected, followed by a cropping position: either a
centered crop or a crop positioned in one of the four corners
of the image. We first randomly select a crop size for the
image of 256 by 256 pixels to have a width and height of 256,
215, 181, or 152 pixels. These values are obtained following
the implementation of the VTN of Kozlov et al. [2]: the
initial size of 256 is multiplied with several scales si to obtain
the resulting crop sizes. These scales are:

s0 = 1, (6)

si = 2−
1
4 si−1, i ∈ [1, 3]. (7)

Then we randomly select a position from the four corners
and the center. Finally, the cropping is performed at the
selected location and the cropped image is resized to the
desired dimensions of 224 by 224 pixels.

We additionally randomly flip the frames horizontally
with probability p = 0.5 and introduce color jitter to alter
the brightness, contrast and saturation. For each of these,
the factor by which they are altered is uniformly sampled
between 0.5 and 1.5.

For validation and testing of the model, we scale to 256
by 256 pixels and perform a centered crop to 224 by 224
pixels, but do not perform any data augmentation.

The depth frames are interpreted as 3-channel grayscale
depth images.

The pose flow is not augmented.
6) RGB feature extraction: We use ResNet-34 [19] pre-

trained on ImageNet [20] as feature extractor for individual
RGB frames. The weights are obtained from the Torchvision
model zoo [13]. The RGB channels of image inputs are
normalized using the mean µ and standard deviation σ of
the ImageNet dataset, given by µ = (0.485, 0.456, 0.406)
and σ = (0.229, 0.224, 0.225), respectively. We obtain a
512-dimensional feature vector for each hand by pooling the
feature map obtained from the final convolutional block in
the spatial dimensions. We concatenate these vectors (one
per hand) to obtain our 1024-dimensional feature vector for
each sequence element.

7) Depth feature extraction: We copy the ResNet-34
model as a separate branch for the depth images, without
weight sharing between the branches. We also obtain a 1024-
dimensional feature vector for each sequence element.

8) Self-attention decoder: The self-attention decoder is
based on the work of Kozlov et al. [2]. In this section, we
explain how the self-attention decoder works.

We obtain a feature vector x per frame as output of
the ResNet-34 feature extractors. The pose flow of the

corresponding frame is a feature vector p. We concatenate x
and p and normalize the resulting vector q to have zero mean
and unit variance by subtracting the mean and dividing by
the standard deviation across all frames in the mini-batch.
Then, we use a non-linear transformation to obtain the self-
attention decoder inputs r:

r = max(0, qW + b). (8)

The dimensionality of q is 2 ·1024+106; the dimensionality
of r is 1024.

a) Positional encoding: First, the positional encoding
is added to the inputs r. The positional encoding is defined
as in the seminal work on transformers [21]:

PE (p, 2i) = sin(p/100002i/dmodel ), (9)

PE (p, 2i+ 1) = cos(p/100002i/dmodel ), (10)

with p the position in the sequence and i the dimension.
There are dmodel = 1024 dimensions in our case.

b) Decoder layers: This is followed by four decoder
layers. Each layer computes eight-head attention followed
by layer normalization [22] and a position wise feed forward
network.

The multi-head attention input X (composed of vectors
r + PE (r)) is first transformed into a query Q, key K and
value V using a trained linear transformation. Each head i
(of the n = 8 heads) computes attention on a subset of the
query, key and value,

Qi = QW i
Q, (11)

Ki = KW i
K , (12)

V i = VW i
V , (13)

A(Qi,Ki, V i) = softmax

(
QiKi>√
1/dk

)
V i, (14)

where weight matrices W i
Q, W i

K and W i
V are used to

transform the query, key and value to a lower-dimensional
subspace, namely dk = dmodel/n = 1024/8 = 128.
The results are concatenated, added to the residual X , and
normalized with layer normalization.

The position wise feed forward network computes

f(x) = max(0, xW1 + b1)W2 + b2, (15)

as per the original transformer [21]. It is also followed
by an addition with the residual and subsequently layer
normalization.

In both the multi-head attention and position wise feed
forward network, dropout (p = 0.1) is applied before the
addition of the residual signal.

9) Training approach: Per sample, we take a temporally
centered segment of 16 frames with a stride of 2, to obtain
a temporal receptive field of 32 frames. If the source sample
is too short, we repeat the final frame until we obtain 16
frames.

We use mini-batches of 32 samples. Each sample consists
of two times 16 frames of RGB and depth inputs (two 224 by
224 pixel images per hand) and pose flow, a 106-dimensional



vector. To process the RGB inputs, we construct a mini-batch
of size 1024 by concatenating the batch, time, and hand axes.
We do the same for the depth images. After processing by
the ResNets, we perform the inverse to obtain 512 features
per hand, per frame, per sample for both RGB and depth.

The model is trained using early stopping: when the
validation loss (categorical cross-entropy) does not decrease
for 10 epochs, training is stopped and the model state at the
epoch with the lowest loss is saved. We begin training with
a learning rate of 1e−4, and decrease the learning rate with
a factor 0.1 every five epochs. The Adam optimizer [23]
is used with β1 = 0.9, β2 = 0.999 and ε = 1e−8. Any
gradients that are larger than 1 are clipped.

Our models are trained on a single NVIDIA TITAN X
(with 12GB VRAM). Because of memory constraints, we
use a batch size of 4 and accumulate gradients over 8 batches
for an effective batch size of 32.

E. Challenge results and final remarks

TABLE I
LEADERBOARD: RESULTS OBTAINED BY THE PROPOSED APPROACH.

Phase Track Rank position Rec. Rate
Development RGB+D 11 0.916700
Test RGB+D 8 0.933200

III. ADDITIONAL METHOD DETAILS

• Did you use any kind of depth information (directly,
such as RGBD data, or indirectly such as 3D pose
estimation trained on RGBD data), either if during
training or testing stage? (X) Yes, ( ) No
If yes, please detail:
We use the provided depth videos during training and
testing.

• Did you use pre-trained models? (X) Yes, ( ) No
If yes, please detail:
A pre-trained 2D CNN, specifically ResNet-34 [19],
was used. This network was pre-trained on ImageNet
[20] and the weights were retrieved from the Torchvi-
sion model zoo [13]. Moreover, the OpenPose BODY-
135 model [16], [15] was used to extract 2D pose key-
points. The ResNet was fine-tuned on the sign language
recognition task, while the OpenPose model was frozen
and used for offline feature extraction only.

• Did you use external data? ( ) Yes, (X) No
If yes, please detail:

• Did you use other regularization strategies/terms?
( ) Yes, (X) No
If yes, please detail:

• Did you use handcrafted features? (X) Yes, ( ) No
If yes, please detail:
We crafted features based on OpenPose keypoints.
Based on the keypoints extracted by OpenPose, we
calculated a representation of movement which we call

pose flow. Specifically, per frame and per keypoint,
the pose flow consists of the angle and magnitude of
the motion vector between this frame and the previous
frame. Details are explained in Section II-D.

• Did you use any face / hand / body detection,
alignment or segmentation strategy? (X) Yes, ( ) No
If yes, please detail:
We extracted square image crops around the hands
using the OpenPose keypoints. Details are explained in
Section II-D.

• Did you use any pose estimation method? (X) Yes,
( ) No
If yes, please detail:
We used OpenPose (BODY-135 model) for full-body
pose estimation. However, the face keypoints were not
used and several irrelevant keypoints (such as the lower
body) were also dropped. Details are explained in
Section II-D.

• Did you use any fusion strategy of modalities? (X)
Yes, ( ) No
If yes, please detail:
We perform early fusion (i.e., before our sequence
processing module) of pose flow and features extracted
from the RGB and depth frames. This fusion is per-
formed using a non-linear transformation (dense layer
with ReLU activation). Details are explained in Section
II-D.

• Did you use ensemble models? ( ) Yes, (X) No
If yes, please detail:

• Did you use any spatio-temporal feature extraction
strategy? (X) Yes, ( ) No
If yes, please detail:
Pose flow is extracted from (spatial) keypoints over
time. This is detailed in Section II-D.

• Did you explicitly classify any attribute (e.g.
gender)? ( ) Yes, (X) No
If yes, please detail:

• Did you use any bias mitigation technique (e.g.
rebalancing training data)?
( ) Yes, (X) No
If yes, please detail:

IV. CODE REPOSITORY

Code repository: https://github.com/
m-decoster/ChaLearn-2021-LAP
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