- Title
 - Age estimation using deep convolutional neural network
- Team details
 - Team name
 - Sungbin Choi
 - Team leader name
 - ♦ Sungbin Choi
 - Team leader address, phone number and email
 - 102-dong 1901-ho, 34, Beobwonbuk-ro, Yeonje-gu, Busan, Republic of Korea
 - 82-10-9216-0213
 - sungbinchoi06@gmail.com, wakeup06@empas.com
 - Rest of the team members
 - None
 - Team website URL
 - None
 - Affiliation
 - None
- Contribution details
 - Title of the contribution
 - Age estimation using deep convolutional neural network
 - Final score
 - Unknown at the time of writing
 - General method description
 - Deep convolutional neural network (CNN) is used for age estimation

- We used Caffe library for experimentation.
- I assumed this task as regression problem
- ♦ 1. Initial Finetuning
 - We started training(finetuning) using GoogLeNet which is pretrained on ImageNet database.
 - We utilized following publically available dataset for training
 - Cross-age Celebrity Dataset (CACD)
 - The image of Groups Dataset
 - Adience collection of unfiltered faces
 - We also utilized following publically available dataset for semi-supervised learning (using pseudolabel) while training
 - Faces in the Wild
 - Labeled Faces in the Wild
 - We partitioned dataset into 10-fold, so 9 fold is used as training set and remaining 1 fold is used as validation set. Theoretically, we can train 10 models by switching validation set fold. But due to the shortage of computing resource and time, we trained only 3 models.
- 2. Finetuning
 - Initially trained model from above step 1 is finetuned
 - Training set from Codalab is used as training set for finetuning.
 - Validation set from Codalab is used as validation set for finetuning
- 3. Combining scores from trained models
 - Output scores (predicted age) from 3 trained models are averaged to produce output
- References
 - Caffe : http://caffe.berkeleyvision.org/
 - CACD : <u>http://bcsiriuschen.github.io/CARC/</u>

- The image of Groups Dataset : <u>http://chenlab.ece.cornell.edu/people/Andy/ImagesOfGroups.html</u>
- Adience collection of unfiltered faces : http://www.openu.ac.il/home/hassner/Adience/data.html
- Faces in the Wild : <u>http://tamaraberg.com/faceDataset/index.html</u>
- Labeled Faces in the Wild : http://vis-www.cs.umass.edu/lfw
- Describe data preprocessing techniques applied (if any)
 - For training data augmentation in deep learning model training, each image is randomly resized to 224 ~ 268 pixel (per each side), random mirroring (left-right flipping of image) is applied, then 224 pixel (per each side) image window is randomly cropped.
- Face Detection Stage
 - No face detection or face landmark based method is used.
- Global Method Description
 - Total method complexity
 - It took me roughly 2 days (using GPU) to train 1 deep CNN model
 - Which pre-trained or external methods have been used (for any stage, if any)
 - We started from GoogLeNet which is pretrained on ImageNet database
 - Which additional data has been used in addition to the provided ChaLearn training and validation data (at any stage, if any)
 - As mentioned above, we used publically available dataset listed below for training deep CNN in initial finetuning stage.
 - Cross-age Celebrity Dataset (CACD)
 - The image of Groups Dataset
 - Adience collection of unfiltered faces
 - Faces in the Wild

- Labeled Faces in the Wild
- Qualitative advantages of the proposed solution
 - We didn't used any hand-crafted imaging features or face landmark detection method for training. Only deep convolutional neural network is used for training. So our experimental method has large flexibility and applicability.
 - We tried to use semi-supervised method to utilize unlabeled dataset for training.
- Results of the comparison to other approaches (if any)
 - Evaluation results are not available at the time of writing
- Novelty degree of the solution and if is has been previously published
 - I published experiments using finetuning from GoogLeNet in the following recent papers.
 - Choi, Sungbin. "Plant identification with deep convolutional neural network: Snumedinfo at lifeclef plant identification task 2015." Working notes of CLEF 2015 conference. 2015.
 - Choi, Sungbin. "Fish identification in underwater video with deep convolutional neural network: SNUMedinfo at LifeCLEF fish task 2015."
- Other details
 - Language and implementation details (including platform, memory, parallelization requirements)
 - C++, Caffe library with using NVIDIA Titan GPU
 - Human effort required for implementation, training and validation?
 - We implemented experimental code on top of Caffe library.
 - Training and validation step is processed automatically without manual intervention
 - Training/testing expended time?
 - Roughly 1~2 days are spent for training each CNN model.
 - For testing, it took roughly 5 minutes to get scores from one CNN model

- General comments and impressions of the challenge? what do you expect from a new challenge in face and looking at people analysis?
 - I enjoyed participating this challenge. I think predicting human emotion or interpreting body language is also interesting for next challenge topic.