Team name	FIKIE
Team leader name	Hilde Kuehne
Team leader address, phone number and email	Fraunhofer-Institut für Kommunikation, Informationsverarbeitung und Ergonomie FKIE Bereich Sensordaten- und Informationsfusion Fraunhoferstraße 20 53343 Wachtberg Germany Tel. +49-(0)228-9435-155 E-Mail: <u>hildegard.kuehne@fkie.fraunhofer.de,</u> <u>kuehne@ira.uka.de</u>
Rest of team members	-

Title of the contribution	Fisher Vectors for generative recognition, parsing and segmentation of human activities
General method description	The proposed methods implements an end-to-end generative approach from feature modeling to activity recognition. The system combines dense trajectories and Fisher Vectors with a temporally structured model for action recognition based on a simple grammar over action units. It uses an open source speech recognition engine for the parsing and segmentation of video sequences. Because a large data corpus is typically needed for training such systems, we mirrored the original input videos to artificially generate more training data. The final result is achieved by voting over the output of various parameter and grammar configurations.
References	The code is an extension of the here presented version: <u>http://serre-lab.clps.brown.edu/resource/breakfast-actions-dataset/</u> HTK: <u>http://htk.eng.cam.ac.uk</u>

Describe data preprocessing techniques applied (if any)	Videos are mirrored for additional training data
Describe features used or data representation model (if any)	Modified Dense Trajectoires (http://lear.inrialpes.fr/people/wang/dense_trajectories)
Dimensionality reduction technique applied (if any)	PCA
Temporal clustering approach (if any)	

Temporal segmentation approach (if any)	HMM + Bigram
Gesture representation approach (if any)	no
Classifier used (if any)	ΗΤΚ
Large scale strategy (if any)	

Transfer learning strategy (if any)	no
Temporal coherence and/or tracking approach considered (if any)	Appearance + distance based Kalman filter
Compositional model used, i.e. pictorial structure (if any)	HOG person detector
Other technique/strategy used not included in previous items (if any)	no
Method complexity analysis	

Qualitative advantages of the proposed solution	?
Results of the comparison to other approaches (if any)	
Novelty degree of the solution and if is has been previously published	Not published in current form

Language and implementation details (including platform, memory, parallelization requirements)	Matlab, Dense trajectoy code, vlfeat lib, HTK
Human effort required for implementation, training and validation?	Don't know if I understand the question. Implementation time was 2 weeks.
Training/testing expended time?	5 min / run
General comments and impressions of the challenge	Thanks a lot to the organizers!