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II. CONTRIBUTION DETAILS

A. Title of the contribution

Our method is composed of several approaches com-
bined in an ensemble scheme to perform isolated sing-
gesture recognition. We combine modalities of video sample
frames processed by a 3D ConvNet (I3D), with body-pose
information in the form of joint locations processed by a
Transformer, hand region images transformed into a semantic
space, and linguistically defined locations of hands. Although
the individual models perform sub-par (60% to 93% accuracy
on validation data), the weighted ensemble results in 95.46%
accuracy.

B. Introduction and Motivation

Our main motivation was to use a state-of-the-art model
of gesture/action recognition and augment it with other ap-
proaches based on different modalities. We wanted to analyze
the performance of an ensemble scheme when different mod-
els utilizing different data are used. As the state-of-the-art
model for gesture/action recognition we use I3D [1] and fine-
tune it from Kinetics400 dataset [2] to several representations
of the challenge data. To incorporate the motion of hands we
detect the body joints using OpenPose [3] and predict the
sign class using a transformer model inspired by the Vision
Transformer [4]. The information about the pose of the hands
is added by our Visual Language Embedding (VLE) model.
In this work, we present a proof-of-concept that transforms
images of hands into a semantic space, where similar poses
lie close to each other. We use concepts from other vision
tasks, that show that deep neural networks trained for the
classification of images fulfill the requirement of embedded
space in the penultimate layer. We finetune a MobileNet [5]
architecture pre-trained on ImageNet [6] to classify our

Samples
Open Pose

Poses

I3D models
Labels

Classification

Video Cropping
(opt. masking)

Fig. 1. The processing of samples by OpenPose. The poses are then used
to crop the video recordings so that we remove unimportant parts of the
image. The crop is per-video constant. Optionally, we apply a mask, so that
only regions with body-parts are visible. These videos are used to train the
different I3D models.

mined dataset of hand images. To add information about the
location of the hand, we developed an algorithm for com-
puting linguistically defined locations of hands. We compute
the location vectors from OpenPose detections and together
with VLE input them into a Transformer to classify the sign.
Lastly, we compute weights of these different models using
Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
optimization algorithm [7].

C. Representative image / workflow diagram of the method

In this section, we provide supportive images. Generally,
red cylinders depict ”outside” data provided by the orga-
nizers; green cylinders are data produced by us during this
challenge; purple rounded rectangles are 3rd party methods;
blue rectangles are our own models/methods.

D. Detailed method description

In this section, we describe the pipeline and its individual
parts. The first step of processing is running OpenPose [3]
on all the video samples. We detect all bodies in the video
and choose the largest one for further processing. We use
the model BODY 25 (default model) to detect 8 body joints
(face, neck, left/right shoulder, left/right elbow, and left/right
wrist) and 21 joints per hand, meaning in total 50 body
joint locations per frame. We also store the confidence of
the detected joints.

Next, we prepare data for training the I3D models (Fig. 1).
We crop the RGB video frames on a per-video basis. We
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Fig. 2. Extraction of hand images (crops) from samples. The grabber
is configurable. In this work we extract square regions enclosing all hand
joints and resize them to 70× 70 pixels. Only hands with mean detection
confidence higher than 0.4 are considered.
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Fig. 3. Hand pose clustering. The clustering is based on the computation of
weighted pose distance. First, we find per-sign clusters and then we cluster
these across all the signs.
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Fig. 4. We train the VLE model from the hand crops. Each crop has an
assigned cluster (class) from the prior processing. The VLE is a MobileNet
pre-trained on ImageNet and fine-tuned on our hand pose clusters.
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Fig. 5. To obtain the VLE representation of test data, we have to obtain
the hand crops from test video samples using the process depicted in Fig. 2.
Then the model produces VLEs that are a semantic representation of the
hand images.
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Fig. 6. The location vectors represent the location of individual hands
in individual frames relative to other body-parts. We selected 15 locations
depicted in Fig. 7. Since many locations represent facial landmarks, we
compute them using the dlib library.

Fig. 7. Regions representing different body-locations, from which the
location vectors are computed.
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Fig. 8. The VLE-transformer takes as input a concatenation of the VLEs
and Location Vectors. It has a form of Vision Transformer.
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Fig. 9. The Pose-transformer takes as input a fraction of the poses from
OpenPose. It has a form of Vision Transformer.



use the body joints detected by the OpenPose. Firstly we get
a scale of the body in the sample according to Euclidean
distance of the shoulder body joints in the first frame. Next,
we crop all remaining frames of the sample relative to the
scale (four times), centered in the x-axis on the neck joint
and y-axis is below the neck joint by 30% of the shoulder
distance. Finally, the crops are resized to the size of 256 ×
256.

Furthermore, we prepare a masked version of these
cropped videos. We start by preparing a binary mask by
rendering the detected hand skeleton and face region. We
repeat a 3×3 dilatation on the per-pixel hand skeleton binary
mask, for metacarpal bones by a factor of 4, for reaming hand
bones by a factor of 2, and for neck/hand bone by a factor
of 20. These masks are then used on the original videos to
produce the masked versions in which only the important
body parts are visible.

We also represent the videos in terms of key-frames. We
detect a constant number of frames per video, where there is
minimal motion. In our experiments, we have chosen 16 key-
frames per video. To obtain the key-frames we first compute
the velocity vectors of the detected joints of the whole body
as a simple difference in x and y axis. Next, we compute the
magnitude of these vectors and sum up all the joint velocities.
The key-frames are then the N = 16 minimal locations in
the velocity signal. To suppress the detection of nearby key-
frames we use a non-minimum suppression with a window
of ±3 frames.

1) Visual Language Embedding: VLEs are used as the
input for the VLE-Transformer. The premise of the system
is to train a deep neural network that will transform an input
image into a semantic vector space. This space should have
a property that similar hand poses are close to each other. To
train such a model we first needed to obtain images of hands
in the same pose (i.e. configuration of fingers). The input
hand images are obtained using the algorithm depicted in
Fig. 2. We use two consecutive algorithms. The first one finds
representative hand poses for each sign. We consider only the
dominant hand (left hand in the mirrored video samples, even
for left- or both-handed signers). We set a parameter of how
many representative hand poses per video sample we want to
detect at most (in our case 5). We sort the detected OpenPose
hand joints by the mean confidence. We consider only hand-
poses with a minimum confidence of 0.6. We apply a non-
maximum suppression of±5 frames to suppress the detection
of the same hand-pose from the same video sample. For
each other video sample, we find all hand-poses that have a
distance smaller than 0.42. The distance measure is defined
as:

D(p1, p2) = min
A

∑
‖Ap1 − p2‖, (1)

where p1 and p2 are the two hand-poses represented as a
set of 21 2D vectors. The matrix A is a similarity transform
(i.e. restricted to scale, rotation and translation). The sum is
performed over the 21 joints. The result is in the metric of
pixels. Since p1 and p2 can stem from images of different

resolution a normalization needs to be performed. In this step
of the solution, we normalize to the length of the shoulder.
This normalization is not perfect and hence the function
is not symmetric and thus is not a real distance. But for
the purpose of our solution, it is sufficient. This algorithm
produces a detection of per-sign representative hand-poses.
Next, we want to cluster these representatives, because one
sign can be composed of more representative hand-poses.
We employ an agglomerative clustering with the distance
function from Eq. 1.

In the second algorithm, we want to join these clusters
from different signs to obtain the definite hand-pose clusters.
We find representative hand-poses for each per-sign cluster.
It is the hand-pose that has a minimal sum of distances to
all the other hand-poses. During experimentation with the
clustering we modified the distance measure (Eq. 1) so that
the similarity transform is found only on palm joints:

A? = min
A

∑
k

‖Ap1 − p2‖ (2)

where k represents the palm joints (MCPs, CMC, and
wrist). And the distance is weighted:

D(p1, p2) =
∑
i

ωi‖A?p1 − p2‖, (3)

where ωi is weighting different finger joints. Precisely
fingertips have the weight of 3.0, DIPs have the weight of
2.0, PIPs have weights of 1.5. The rest of the weights are 1.0.
Finally, they are normalized to a sum of 1. This algorithm
leaves us with 52 final hand-pose clusters. When observing
the data, we found some errors that were a result of the
imperfections in the distance measure. The main problem
is that we are limited to 2D distance computation and
perspective plays a huge role (larger than we anticipated).
Hence, we corrected the errors manually and ended up with
39 hand clusters. Unfortunately, the clusters were heavily
imbalanced.

The last stage was the training of the deep neural network.
We performed experiments with ResNet-18 [8], MobileNet
[5] and a custom model. We tested randomly initialized
models and models pre-trained on ImageNet. From these
experiments, we selected MobileNet pre-trained on ImageNet
[6] to serve as the VLE extractor. We used SGD for opti-
mization with a learning rate of 0.001 and momentum of 0.9.
We augment the training data using color jitter, horizontal
flip (to accommodate for the right hand), per-pixel Gaussian
noise, grid distortion, motion blur, random brightness, and
contrast transform, RGB shift, rotation of max ±10 degrees,
random crop and resize. The categorical cross-entropy was
used as the optimization criterion. After 40 iterations of
finetuning we obtain a 95% training accuracy and 65%
validation accuracy. The validation data were from two left-
out signers. This shows the high sensitivity to the hand shape,
and perspective transformations of the hands (since signers
perform the signs with different hand orientations). The VLE
is the 1280 dimensional vector from the penultimate layer of



MobileNet. The algorithms are depicted in Figures 3, 4 and
5.

2) Location Vectors: We wanted to incorporate knowl-
edge from the field of sign language linguistics, namely
the location of the performed sign. We define 15 locations:
Neutral space (fallback), Above the head, Upper part of the
face, Eyes, Nose, Mouth, Lower part of the face (chin),
Cheeks, Ears, Neck, Shoulders, Chest, Waist, Arm, Wrist
(of the other hand). The algorithm computes the location
of both hands for every frame. First, it detects whether the
hand is in a ”pointing” gesture by computing the extension
of the index finger. If so, the fingertip of the index finger is
used for relative location computation. If not, then a mean
location computed from all hand joints is considered. The
hand location is then compared to the defined regions (see
Fig. 7) and the closeness to the region center is computed.
A soft-max vector representing the relative closeness to each
region is constructed for each hand and concatenated into a
30-dimensional vector (see Fig. 6).

3) I3D: In our final ensemble, we utilize 13 I3D
models [1] in total. Their implementation is based
on https://github.com/IBM/action-recognition-pytorch. Be-
fore the training, each video was cropped (with optional
masking) based on detected poses, see Fig. 1. Furthermore,
16 frames with a size 256 × 256 pixels were selected per
video. The selection of these frames is based on two different
methods. The first method is a pseudo-random choice from
the original repository (denoted as random). The second
method is based on our key-frames (denoted as key-frames),
see subsection above. All I3D models can be divided into
three groups.

The first group of four models was trained before the start
of the competition test phase. The validation set for these
models were signers 40, 41, and 42. The rest of the signers
were in the training set. The models in the first groups were
trained during 50 epochs using SGD optimizer with starting
learning rate lr = 0.01 and cosine learning schedule. These
models were fine-tuned using the whole training set after
the start of the competition test phase during 20 additional
epochs using SGD with starting learning rate lr = 0.001 and
cosine learning rate schedule.

The second group of four models was trained after the start
of the competition test phase. The validation set for these
models was competition development data. The models were
trained during 80 epochs using SGD optimizer with starting
learning rate lr = 0.01 and cosine learning schedule.

The third group of five models was trained under 5-
fold cross-validation protocol using a competition training
set only. Each fold was selected manually with respect to
different signers. The models were trained during 50 epochs
using SGD optimizer with starting learning rate lr = 0.01
and cosine learning schedule again.

All the I3D models were pretrained on the Kinectics400
dataset [2]. Data were normalized to the ImageNet mean and
standard deviation. We used batch size bs = 10 for all the
experiments. Moreover, group center crop is used during the
training. A comparison of the models can be found in Table

TABLE I
DETAILS OF THE MODELS. THE RECOGNITION RATE IS CALCULATED ON

THE COMPETITION DEVELOPMENT SET.

Model Data Frames Slc. Rec. Rate
I3D-Crop crops random 0.9232
I3D-Key crops key-frames 0.9090
I3D-Mask masked random 0.9178
I3D-Key mask masked key-frames 0.9063
I3D-Crop new crops random 0.9292
I3D-Key new crops key-frames 0.9149
I3D-Mask new masked random 0.9187
I3D-Key mask new masked key-frames 0.9035
I3D-Cros-1 crops random 0.9029
I3D-Cros-2 crops random 0.9117
I3D-Cros-3 crops random 0.9095
I3D-Cros-4 crops random 0.8993
I3D-Cros-5 crops random 0.8952
Pose-transformer Body-Pose whole video 0.8660
VLE-transformer-1 VLE-Locations key-frames 0.6034
VLE-transformer-2 VLE-Locations key-frames 0.6048
VLE-transformer-3 VLE-Locations key-frames 0.6517

I. The models with the highest validation recognition rate
were selected for the final evaluation.

4) Transformer model: Other than I3D models, we also
used four transformer models in our final ensemble. To be
more specific, we utilized vision transformer architecture [4].
The difference from the original architecture lies in the em-
bedding layer that prepares the input data. We utilized feed-
forward multi-layer perceptron, which transforms the input
vectors of the given parametrization into the transformer
input dimension. In our experiments, we used two different
input parametrizations: Body-Pose, and a combination of
VLE and Location vectors.

Body-Pose parametrization is based on selected 2D key-
points provided by OpenPose. These skeleton data are further
pre-processed per frame for each video sample. The whole
dataset is normalized to have a uniform distance of the
shoulders of signing persons. This distance is calculated from
the first frame of each sample. Furthermore, the skeleton data
are centered according to the position of the neck. The final
pre-processing step corrects hand poses for low confidence
images (confidence < 0.3). These hand poses are replaced
with poses from surrounding frames.

During the training of the model, we utilized the following
augmentations:

• random drop of the first 10-15 frames from beginning
and the end of the video;

• random selection of even/odd frames;
• random horizontal flip of the data (simulation of

left/right handed signing) ;
• Gaussian noise addition to wrist locations and hand-

pose scale.
In our final ensemble we used one model based on

the body-pose parametrization (Pose-transformer) with the
following parameters: max length of the sequence: 120, size
of the input vector: 84, N-stages: 2, transformer size: 1024,
size of feed-forward layer: 2048, number of heads: 2.

VLE and Location Vectors are concatenated into a single



TABLE II
ENSEMBLE WEIGHTS FOR THE SPECIFIC MODELS.

Model Weight
I3D-Crop 0.04762968
I3D-Key 0.05915348
I3D-Mask -0.02789492
I3D-Key mask 0.12705846
I3D-Crop new 0.13529561
I3D-Key new 0.04292918
I3D-Mask new 0.07635797
I3D-Key mask new 0.03582622
I3D-Cros-1 0.05322100
I3D-Cros-2 0.12860186
I3D-Cros-3 0.02714533
I3D-Cros-4 -0.05312429
I3D-Cros-5 -0.04703171
Pose-transformer 0.17253467
VLE-transformer-1 0.08502941
VLE-transformer-2 0.11312029
VLE-transformer-3 0.02414777

vector with a size of 2590. Only key-frames are selected
from the whole sequence, which forms the input sequence
for the embedding layer. We did not use any additional
augmentations during the training phase.

In our final ensemble we used three models based on the
VLE-Locations parametrization (VLE-transformer) with the
following parameters:

1) max length of the sequence: 120, size of the input
vector: 2590, N-stages: 6, transformer size: 1024, size
of feed-forward layer: 2048, number of heads: 2;

2) max length of the sequence: 120, size of the input
vector: 2590, N-stages: 2, transformer size: 512, size
of feed-forward layer: 2048, number of heads: 2;

3) identical as 2) but with additional learn-able positional
encoding.

All the transformer models were trained for 100 epochs
using SGD optimizer with starting learning rate lr = 0.1 and
learning rate exponential shift ex = 0.95. The models with
the highest validation recognition rate were selected for the
final evaluation. A comparison of the models can be found
in Table I.

5) Final ensemble: The final ensemble is composed of
13 I3D models, 1 Pose transformer model, and 3 VLE
transformer models. To compute weights of these models,
we utilized CMA-ES optimization algorithm. The input into
the algorithm are predicted soft-max values for development
set, whereas algorithm should maximize the development set
recognition rate. Weight for each model can be found in the
Table II-D.5.

E. Challenge results and final remarks

TABLE III
LEADERBOARD: RESULTS OBTAINED BY THE PROPOSED APPROACH.

Phase Track Rank position Rec. Rate
Development x x x
Test RGB 12 0.9546

Given the nature of the competition, our method is based
on combining many models that perform well on the devel-
opment data. The work needs to be polished and when the
testing phase will be open for experimenting we can perform
additional ablation studies. We plan to focus on individual
components of the system and also the possibility of training
them dependently on each other.

III. ADDITIONAL METHOD DETAILS

Please reply if your challenge entry considered (or not)
the following strategies and provide a brief explanation.

• Did you use any kind of depth information (directly,
such as RGBD data, or indirectly such as 3D pose
estimation trained on RGBD data), either if during
training or testing stage? ( ) Yes, (X) No

• Did you use pre-trained models? (X) Yes, ( ) No
All I3D models were pre-trained on the Kinetics400
dataset. The MobileNet for VLE was pre-trained on
ImageNet.

• Did you use external data? ( ) Yes, (X) No

• Did you use other regularization strategies/terms?
( ) Yes, (X) No

• Did you use handcrafted features? (X) Yes, ( ) No
The location vectors are handcrafted.

• Did you use any face / hand / body detection,
alignment or segmentation strategy? (X) Yes, ( ) No

The location vectors use information about facial land-
marks (e.g. eyes, mouth, nose, ears, ...) and whole body
pose. The pipeline is heavily dependent on OpenPose
joint locations estimation.

• Did you use any pose estimation method? (X) Yes,
( ) No
We use OpenPose 1.

• Did you use any fusion strategy of modalities? (X)
Yes, ( ) No

We fuse (a) sign recognition from video frames (I3D),
(b) sign recognition from pose change (Transformer),
(c) sign recognition from hand locations and appear-
ances (VLE+Transformer).

• Did you use ensemble models? (X) Yes, ( ) No
We used the ensemble of the following models:
Crop, Key, Mask, Key mask, Crop new, Key new,
Mask new, Key mask new, Cros-1, Cros-2, Cros-3,
Cros-4, Cros-5, Pose-transformer, VLE-transformer-1,
VLE-transformer-2, and VLE-transformer-3. The opti-
mal weights of the ensemble were obtained by CMA-
ES (Covariance Matrix Adaptation Evolution Strategy)
optimization algorithm. CMA-ES is a stochastic op-
timizer for robust non-linear non-convex derivative-
and function-value-free numerical optimization. As an

1https://github.com/CMU-Perceptual-Computing-Lab/openpose



starting optimization point we used equally weighted
ensemble.

• Did you use any spatio-temporal feature extraction
strategy? ( ) Yes, (X) No

• Did you explicitly classify any attribute (e.g.
gender)? ( ) Yes, (X) No

• Did you use any bias mitigation technique (e.g.
rebalancing training data)?
( ) Yes, (X) No

IV. CODE REPOSITORY

Code repository: https://github.com/mhruz/
ChaLearn-SLR
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